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We perform mean-field density functional theory calculations on a lattice model to study the wetting of a
solid substrate decorated with a ring pattern of nanoscale dimensions. We have found three different liquid
morphologies on the substrate: a ring morphology where the liquid covers the pattern, a bulge morphology
where a droplet is forming on one side of the ring, and a morphology where the liquid forms a cap spanning
the nonwetting disk inside the pattern. We investigate the relative stability of these morphologies as a function
of the ring size, wall-fluid interaction, and temperature. The results found are in very good agreement with
experiments and calculations performed on similar systems at a micrometer length scale. The bulge morphol-
ogy has also been observed in Monte Carlo simulations of the lattice model. Our results show that �i� mor-
phologies of wetting patterns previously observed on a much larger ��m� scale can also form on a nm length
scale, �ii� whether or not this happens depends crucially on the size of the wettable pattern, and �iii� the
wettable ring may only be partially wet by the bulge morphology of the fluid. This morphology is a result of
a spontaneously broken symmetry in the system.
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I. INTRODUCTION

The wetting of solid surfaces by liquids is a phenomenon
which has attracted a great deal of attention for many years
�1–3�. A droplet forms on a surface when it is thermodynami-
cally more favorable for the fluid to partially condense rather
than remain as a homogeneous vapor �1�. This situation hap-
pens when the system is in a supersaturated state—i.e., when
the chemical potential � is greater than its value at bulk
gas-liquid coexistence �0. In this regime, the stable state is
the bulk liquid but the low density of fluid available pre-
cludes a transition to this state. If the surface is ideal �i.e.,
with no defects of any kind�, then the contact angle � formed
by a macroscopic droplet with this surface is described by
Young’s equation �4�

�sl − �sv + �lv cos � = 0, �1.1�

where �sv, �sl, and �lv are the solid-vapor, solid-liquid, and
liquid-vapor surface tensions, respectively. The droplet is
seen here as a spherical cap-shaped aggregate of the liquid
phase surrounded by the metastable vapor.

Young’s equation is macroscopic in nature and is not uni-
versally applicable. For instance, Eq. �1.1� only takes into
account the change in free energy generated by the creation
of an interfacial area between two phases, therefore neglect-
ing the contact line formed at the interface of the solid-
liquid-vapor phases. This contribution becomes important at
small droplet sizes and a more general form of Young’s equa-
tion known as the Gretz equation �5� gives

�sl − �sv + �lv cos � +
�slv

R sin �
= 0, �1.2�

where �slv is the line tension and R is the droplet radius.
A real surface also displays heterogeneities which can al-

ter the contact angle of the droplet. The perturbation can
either be energetic where a specific location of the surface
interacts differently with the fluid or geometric where the
surface is not smooth and aggregates of solid are present
over the surface plane. The Cassie-Baxter and Wenzel equa-
tions represent generalization to heterogeneous surfaces of
Young’s equation for homogeneous surfaces. The Cassie-
Baxter equation �6,7� is given by

cos �app = f1 cos �1 + f2 cos �2, �1.3�

where �app is the apparent contact angle on the surface. In
this approach the surface is viewed as made up of two types
of patches 1 and 2 and the cosine of the apparent contact
angle is a linear combination of the cosines of the contact
angles ��1 and �2� on those homogeneous surfaces with each
weighted by the surface area fraction. The Wenzel equation
�8� gives

cos �app = r cos � , �1.4�

where � is the contact angle on the homogeneous surface and
r is the ratio of the actual area of liquid-solid contact to the
projected area on the horizontal plane. It should be empha-
sized that Eqs. �1.1�–�1.4� apply to the formation of macro-
scopic droplets where, for example, the notion of a contact
angle makes sense in that one can actually see the surface of
the droplet and determine the angle at which it makes contact
with the plane of the solid substrate. At molecular length*Electronic address: monson@ecs.umass.edu
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scales contact angles need a more careful definition because
of the diffuseness of the interfaces at these scales.

Over the last decade, researchers have made substantial
progress in controlling surface heterogeneities even down to
the nanometer length scale. It is now possible to imprint
specific geometric or energetic patterns on a surface at such a
small length scale �9–17�. At the length scales pertaining to
individual molecules or small molecular assemblies the con-
tact angle is an ill-defined quantity and macroscopic theoret-
ical treatments are reasonably subject to question. For this
reason the wetting properties of surfaces endowed with nano-
scopic heterogeneities have received significant attention
from theory and molecular simulations, which are well suited
to study these kinds of systems. For instance, a surface can
be decorated with stripes of variable dimensions which show
a preferential attraction for the liquid. This gives rise to the
emergence of new properties and phases which have been
studied using both theory and simulations �18–40�.

Another example is the imprinting of ring patterns over
the surface �14�. In this situation, the pattern is characterized
by an inner radius Rin and an outer radius Rout forming an
annulus of constant width in which the surface displays a
preferential interaction for the fluid �see Fig. 1�. Those sur-
faces may be prepared by microcontact printing using al-
kanethiols on gold �13,14�. In this method an elastomer
stamp is used to deposit molecules on surfaces. The stamp is
first “inked” with a solution of alkanethiol molecules and
then pressed onto a gold surface, which results in well-
defined hydrophilic sites. Then the remaining bare gold sur-
face is made hydrophobic by a dipping into another al-
kanethiol. A liquid is then subsequently adsorbed onto the
surface in a closed cell. The experiments are conducted by
cooling down or heating up the system, thereby changing the
volume of liquid formed on the surface �14�. Experiments
performed on these ring-patterned substrates show that when
the volume increases, the liquid geometry formed over the
pattern undergoes a transition from a ring morphology
�where the liquid forms a homogeneous covering over the
pattern� to a bulge morphology where a droplet of liquid is
formed over one side of the pattern. This bulge geometry
“breaks” the symmetry imposed by the pattern. As the vol-
ume of liquid increases, the bulge progressively spreads over
the nonwetting disk inside the pattern and finally a spherical
cap is formed over the whole disk of radius Rout. This bulge
geometry can also be observed on surfaces patterned with
micrometric stripes �29�.

Lenz et al. �36� have modeled the wetting of surface im-
printed with rings of micrometric dimensions. In their calcu-
lations, the macroscopic total interfacial free energy of the
system is numerically minimized under a condition of con-
stant liquid volume V �29–33,36�. Their numerical results
describe correctly the experimental results as a morphologi-
cal transition from a ring to a bulge geometry is observed
when the volume of liquid increases. It is interesting to ask
whether this phenomenology persists down to nanometer
length scales. To investigate this question a molecular-based
model is necessary since the continuum assumptions implicit
in the approach of Lenz et al. �36� may fail at small length
scales.

In this paper, we investigate the formation of liquid mor-
phologies over surfaces imprinted with ring patterns of na-
nometric dimensions. We perform a set of calculations using
a mean-field density functional theory �MF-DFT� on a lattice
model. The lattice model provides a useful compromise
that allows us to study systems between microscopic and
mesoscopic sizes while maintaining computational tractabil-
ity. This model has had significant success in the modeling of
fluid confinement into mesoporous materials �e.g., in gas ad-
sorption or liquid porosimetry� �41–47�. In the present appli-
cation the grand canonical ensemble used in these works is
not suitable because liquid droplets correspond to supersatu-
rated �metastable� states of the bulk vapor, an effect of the
curvature of the vapor-liquid interface �48� that becomes
very large for nanoscale droplets. A similar situation arises in
studies of free droplets in finite volumes �49,50�. Calcula-
tions in the grand canonical ensemble allow variations of the
total density, and the morphological transitions of interest in
our system are preempted by the bulk vapor-liquid phase
transition. Therefore we implement an algorithm that allows
us to solve the mean-field equations in the canonical en-
semble �N-V-T� where the mean density of the system is
fixed �47,51,52� and we can access supersaturated states of
the bulk vapor. The experiments conducted on these systems
�14� are carried out on a length scale of the order of a �m,
and the curvature effect on the vapor-liquid interface and the
degree of supersaturation in the vapor phase is quite small.
We refer the reader to a recent article by Lipowsky �32� for
additional discussion of the interpretation of experiments on
the wetting of chemically structured surfaces. Both the ex-
periments �14� and our calculations correspond to the third
scenario described in Sec. 3.1 of that article.

The remainder of this paper is organized as follows. In
Sec. II we present the models and methods relative to our
calculations. The results are described in Sec. III, and con-
clusions from this work are presented in Sec. IV.

II. MODELS AND METHODS

A. Lattice Hamiltonian

To study the wetting of nanopatterned substrates we dis-
cretize the space by employing a lattice model. In our model
spherically symmetric fluid molecules are restricted to sites
on a simple cubic lattice such that each molecule has six
nearest neighbors. Each site can be occupied by a single

FIG. 1. �Color online� Geometry of the ring pattern. Surface 1 is
nonwetting and surface 2 has a preferential attraction for the liquid.
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molecule at most or it can be empty. The former condition
accounts for a short-ranged repulsion between a pair of
molecules. Hence, a configuration of the lattice fluid
may be represented by the N-dimensional vector N
= �n1 ,n2 , . . . ,nN�, where N is the total number of sites on
the lattice and

ni = �0, lattice site empty,

1, lattice site occupied,
� i = 1, . . . ,N , �2.1�

is the occupation number at site i. The characteristic energy
function �i.e., the Hamiltonian� of our lattice fluid may then
be cast as

H�N� = −
�

2�
i=1

N

�
j�i

NN�i�

ninj + �
i=1

N

ni�i
wf, �2.2�

where �	0 determines the strength of attraction between a
pair of fluid molecules and

�i
wf = �

k
vik

wf�rik� �2.3�

is the total energy between a fluid molecule at site i and the
solid substrate. Hence, the sum on k in the previous equation
extends over lattice sites pertaining to the solid substrate.
The sum on j in Eq. �2.2� extends over the nearest-neighbor
sites NN �i� of site i. Thus, we model fluid-fluid attraction
according to a �short-range� square-well potential where we
assume the width of the attractive well to be identical to the
lattice constant.

In this work the solid substrate is decorated with wettable
rings of inner radius Rin and outer radius Rout. We label a ring
pattern using the notation Rin−Rout so that a ring with an
inner radius of 15 sites and an outer radius of 20 sites will be
denoted as a 15-20 ring. We model vik

wf using a Lennard-
Jones 12-6 potential

vik
wf�rik� = �4
��rik

−12 − rik
−6� , k � ring,

0, k � ring.
� �2.4�

Here 
 is the ratio of the fluid-solid Lennard-Jones well
depth to the nearest-neighbor fluid-fluid interaction strength.
In our calculations we shift the z coordinates so that the
interaction energy for a fluid site adjacent to the ring surface
and its nearest-neighbor surface site is −
�. We have used
two values of 
 �
=0.2 and 
=0.3� to investigate the effect
of this parameter on the wetting properties. For both these
values of a uniform surface would be completely wetted �the
contact angle is zero� by the fluid. For the case of 
=0 the
surface is completely nonwetting �the contact angle is 180°�.
We can refer to the ring surfaces as being hydrophilic or
lyophilic and the remainder of the surface as hydrophobic or
lyophobic.

B. Mean-field density functional theory

Let us assume our lattice fluid to be coupled to an infi-
nitely larger reservoir of matter. Its equilibrium states are
then given by minima of the grand potential

− ���T,�� = ln 
�T,��

= ln �
N

exp�− ��H�N� − ��
i=1

N

ni	� , �2.5�

where �
1/kBT �kB Boltzmann’s constant�, T denotes the
temperature, � is the chemical potential, and 
 is the grand
canonical partition function in standard notation. Let us also
assume that we may write

H�N;�� = H0�N� + �H1�N� , �2.6�

where H0 and H1 are the Hamiltonians governing some ref-
erence system �subscript 0� and a perturbation �subscript 1�,
respectively, and 0���1 is a dimensionless parameter that
serves to switch continuously between the reference system
��=0� and the system of interest ��=1�. Inserting Eq. �2.6�
into the far right side of Eq. �2.5� and introducing a mean-
field approximation in terms of a set of undetermined param-
eters ��i�, namely,

H0�N� 
 �
i=1

N

�ini, �2.7�

we eventually arrive at the Euler-Lagrange equation

�−1 ln
�i

1 − �i
− � �

j�i

NN�i�

� j + �i
wf − � = 0, i = 1, . . . ,N ,

�2.8�

through a variational calculation. Equation �2.8� forms the
basis of the calculations presented below. Details of this deri-
vation can be found in Ref. �53�.

The treatment so far implicitly assumes that the fluid in
contact with the solid surface is coupled to an infinitely large
bulk reservoir of matter. However, as discussed in the Intro-
duction we want to solve the equations for a fixed overall
density in the system, so we are interested in minima of the
Helmholtz free energy defined through the Legendre trans-
form

F 
 � + N�̄� , �2.9�

where the mean density �̄ is given by

�̄ 

1

N�
i=1

N

�i. �2.10�

Equilibrium states correspond to minima of F subject to the
constraint

�
i=1

N

�i − N�̄ = 0; �2.11�

that is, we are seeking solutions of the equation
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�

��i
�F − �
�

i=1

N

�i − N�̄�	
=�−1 ln

�i

1 − �i
− � �

j�i

NN�i�

� j + �i
wf − � = 0, i = 1, . . . ,N ,

�2.12�

where � is an as-yet-undetermined Lagrangian multiplier.
However, comparison of Eqs. �2.8� and �2.12� leads us to
conclude that �=� if both approaches are required to give
the same equilibrium states �regardless of whether these are
globally stable or only metastable�.

We may rearrange Eqs. �2.11� and �2.12� to give

�i =
�ci

1 + �ci
, i = 1, . . . ,N , �2.13�

and

�
i

�ci

1 + �ci
− N�̄ = 0, �2.14�

where

� 
 exp���� ,

ci 
 exp�− �
�i
wf − � �

j�i

NN�i�

� j�	 . �2.15�

We solve Eqs. �2.13� and �2.14� simultaneously for �i and �
by iteration via

�i
�k+1� =

��k�ci
�k�

1 + ��k�ci
�k� , i = 1, . . . ,N , �2.16�

and

��k+1� = ��k�
 N�̄

�i
�i

�k+1�� . �2.17�

Convergence is assumed when ����k+1�−��k�� /��k���10−8.

C. Generation of fluid morphologies

In order to find the maximum number of solutions of the
density distribution for a given value of �̄, we solve the
mean-field equations with different initial configurations.
The first obvious choice is to fix all the local densities �i’s to
the same value. For instance, starting from a low value of �̄
and setting �i= �̄, we solve Eq. �2.13� using the algorithm
described in the previous section. The converged density dis-
tribution corresponding to this value of �̄ can then be used as
a starting configuration for a new state at either higher or
lower value of �̄. However, this method does not ensure that
we find all the solutions corresponding to the possible mor-
phologies formed by the fluid over the surface, as we only
generate solutions with a symmetry imposed by the ring pat-
tern. In order to facilitate a search for solutions that “break”
this symmetry we use the following method.

�1� We extend the pattern on one side of the ring �see Fig.
2�. The lattice surface sites contained in this extended region
interact with the fluid as a site contained into the ring pattern.
The mean-field equations for this system are then solved in
the N-V-T ensemble.

�2� The fluid density distribution generated from this sur-
face geometry is used as a starting configuration for a system
where only the original ring pattern is considered and we
solve the mean-field equations in the N-V-T ensemble.

The size and position of the pattern extension can be
modified �see Fig. 2�, and this method allows us to find dif-
ferent classes of morphologies that may or may not present
the axial symmetry imposed by the ring pattern. Depending
on the pattern extension size, small variations of the Helm-
holtz free energy can be found within each class. We always
consider the morphology with the lowest F.

III. RESULTS

A. Class of fluid morphologies formed
over a ring-patterned surface

We first study the liquid morphologies formed over two
rings of dimension 15-20 and 30-40, respectively. These two
ring patterns have the same Rout /Rin ratio but the length scale
is larger for the second ring. The temperature is fixed at T*

=kT /�=1.3, corresponding to a ratio T /Tc=0.86 where Tc is
the bulk critical temperature. The surface field is set to 

=0.3. The Helmholtz free energy of the fluid morphologies
formed over the 15-20-ring-patterned surface is plotted as a
function of the deviation of the total density from the bulk
vapor coexistence density ���= �̄−�v

b� in Fig. 3. For the sake
of clarity, the free energy of the bulk system, Fb, for the same
overall density is subtracted from F. We clearly observe the
existence of two branches in the free energy plot, intersecting
at ���0.0130. These branches correspond to a ring and a
spherical cap morphology presenting the axial symmetry of
the underlying ring pattern. In Fig. 4 we represent snapshots
of the ring and spherical cap. Only the “liquid” lattice sites—
i.e., sites for which the local density fulfilled the criterion
�i	0.5—are represented �54�. The ring and spherical cap
morphologies can either be stable, metastable, or unstable as
a function of the total density of the system. Following the
morphologies of the lowest Helmholtz free energy the liquid

FIG. 2. �Color online� Illustration of the pattern extension used
to generate asymmetric morphologies.
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forms a covering over the ring at low density �or liquid vol-
ume�. As the density increases, the number of layers over the
pattern increases, thereby leading to a thickening of this ring
morphology.

We mentioned earlier the difficult task of precisely defin-
ing a contact angle at a microscopic scale. For the droplets
studied here the widths of the interfaces are not insignificant
compared with the droplet size, so we use the equimolar
dividing surface to locate the vapor-liquid interface. For the
lattice gas model the dividing surface of the planar vapor-
liquid interface occurs when the fluid density is equal to 0.5
and we assume that this is also true for the droplet. We make
a linear fit of the position of the dividing surface for the first
four layers of the droplet. The slope of this fit is simply
related to the contact angle formed with the solid substrate.
Even with this definition it can be difficult to precisely de-
termine a contact angle especially for thin film morphologies
like the ring.

When the system reaches densities ��	0.0130 the fluid
takes a morphology where a cap of liquid forms over the ring
and nonwetted region of the surface that it surrounds. At the
contact line, the spherical cap interface is pinned by the pat-
tern and the droplet forms a contact angle ��110° with the
surface. The contact angle increases with the volume of liq-
uid in the cap due to the pinning of the vapor-liquid-solid
contact line at the edges of the ring pattern.

We now focus on the 30-40 ring. The Helmholtz free
energy plot displays a third branch appearing at intermediate
densities between the ring and the cap �Fig. 5�. This branch
intersects with the ring branch at ���0.0110 and with the
cap branch at about ���0.0162. The liquid morphology
corresponding to this new branch has a bulge shape which
does not follow the symmetry of the underlying pattern. As
can be seen in Figs. 6 and 7, the liquid forms regular layers
over the whole ring pattern. However, at one side of the ring,
a bulge of liquid is formed over the ring layers. This specific
morphology can only be obtained by “breaking” the symme-
try imposed by the ring pattern. The bulge morphology pre-
sents only a symmetry with respect to one plane normal to
the surface and passing through the middle of the ring. The
liquid formed over the substrate can now take three different
morphologies: ring, bulge, and cap �see Fig. 6�. As in the
case of the 15-20 ring, the ring morphology is stable at low
density and the liquid thickens over the ring pattern as �̄
increases. Then a bulge is formed over a portion of the ring
pattern. As the density increases, the bulge grows and pro-
gressively spreads over the nonwetting disc portion of the
surface �see Fig. 8�. The stability of this morphology reflects
a balance between the interfacial tensions and the bulk free
energy. We characterize the bulge morphology with two dif-
ferent contact angles �in and �out. These angles are defined in
the plane of symmetry which bisects the ring and the bulge.
Those two contact angles remain roughly constant at �out
�120° and �in�180° as the bulge progressively covers over

FIG. 6. �Color online� Snapshots of the classes of fluid mor-
phologies formed over a 30-40-ring-patterned surface. Ring �left� at
��=0.0104, bulge �center� at ��=0.0144, and spherical cap �right�
at ��=0.0174. T*=1.3, 
=0.3.

FIG. 3. Excess Helmholtz free energy per lattice site �in units of
�� for the 15-20-ring-patterned surface. Results are shown for the
ring �dot-dashed lines� and spherical cap �dashed lines� morpholo-
gies. T*=1.3, 
=0.3.

FIG. 4. �Color online� Snapshots of the classes of fluid mor-
phologies formed over a 15-20-ring-patterned surface. Ring �left�
and spherical cap �right� morphologies at ��=0.0130. T*=1.3, 

=0.3.

FIG. 5. Excess Helmholtz free energy per lattice site �in units of
�� for the 30-40-ring-patterned surface. Results are shown for the
ring �dot-dashed lines�, bulge �solid line� and spherical cap �dashed
lines� morphologies. T*=1.3, 
=0.3.
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the surface. When the liquid volume is large enough, a
spherical cap is then formed and covers the whole area de-
fined by the disc of radius Rout. Initially this cap has a contact
angle of ��90° with the surface, a value that as in the 15-20
case increases with the volume of liquid in the cap due to the
pinning of the vapor-liquid-solid contact line at the edges of
the ring pattern.

B. Influence of the ring dimension

We now investigate the influence of different parameters
that may control the shape of the liquid morphologies formed
over the patterned surface. We first consider the effect of a
ring widening and the subsequent impact on the bulge mor-
phology. In Fig. 9, we plot the Helmholtz free energy of the
different liquid morphologies formed over a 30-50 ring.
Similar to the 30-40 ring, we observe three different
branches in this plot that we can associate with the ring,
bulge, and cap morphologies. The bulge branch intersects
with the ring branch at ���0.0130 and with the spherical
cap at ���0.0188. The different morphologies are shifted to
larger densities as compared to the 30-40 ring. An example
of the bulge morphology is represented in Fig. 10. The over-
all shape of the bulge displays a smoother contour than the
one found for the smaller ring, and the bulge is forming more
of a bump geometry rather than a droplet on the ring. In
other words the contact angle along the annulus is smaller
for the 30-50 than for the 30-40 ring. The contact angles �in

and �out formed by the bulge morphology with the surface in
the symmetry plane are, however, very close to the 30-40
ring ones. The larger mean radius of curvature of the 30-50
ring allows us to accommodate more smoothly the fluid den-
sity variation along the annulus and the 30-50 bulge mor-
phology is covering a larger area of the pattern than the
30-40 bulge. As the density increases, the system finally un-
dergoes a morphological transition to a spherical cap forming
a contact angle of ��50° with the surface. This first stable
cap morphology is forming a smaller contact angle with the
surface than the 30-40 ring case. As the density increases, the
cap volume increases with the vapor-liquid interface pinned
at the outer rim of the pattern, therefore leading to an in-
creasing of the observed contact angle.

We may also note that the Helmholtz free energy of the
bulge branch has a slope close to that for the ring and it
becomes harder to observe a significant difference between
the two. We can draw a parallel with the case of a homoge-
neous surface. If the wall-fluid interaction parameter 
 is
weak enough, the fluid can form liquid droplets on top of the
surface. As the interaction increases the contact angle of the
droplets decreases, and finally when we reach the wetting
transition �
wet� the liquid can only organize into a film cov-
ering the whole surface area. When we increase the ring

FIG. 7. Lateral cut of the snapshots of the classes of fluid mor-
phologies formed over a 30-40-ring-patterned surface. Ring �left� at
��=0.0104, bulge �center� at ��=0.0144, and spherical cap �right�
at ��=0.0174. T*=1.3, 
=0.3.

FIG. 8. �Color online� Bulge morphologies formed over a 30-
40-ring-patterned surface as a function of the density. The dashed
lines surrounding an image indicate metastable bulge morphologies
with respect to the ring or the spherical cap. T*=1.3, 
=0.3.

FIG. 9. Excess Helmholtz free energy per lattice site �in units of
�� for the 30-50-ring-patterned surface. Results are shown for the
ring �dot-dashed lines�, bulge �solid line�, and spherical cap �dashed
lines� morphologies. T*=1.3, 
=0.3.

FIG. 10. �Color online� Bulge morphology over a 30-50-ring-
patterned surface ���=0.0158�. T*=1.3, 
=0.3.
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dimensions while maintening 
 constant at a value above

wet, we increase the number of solid sites interacting with
the liquid, and therefore this is equivalent to increasing the
wall-fluid interaction parameter for a homogeneous surface.
We observe that the bulge contact angle along the annulus is
decreased compared to the case of the 30-40 ring. If the
attractive surface area �i.e., the ring width� is large enough,
the bulge will cease to be stable.

C. Influence of the surface field

We now focus on the effect of the field strength imposed
by the ring pattern and modify the wall-fluid interaction pa-
rameter 
. We consider a 30-40 ring where we set 
=0.2.
We now fall into a regime of partial wetting of the ring
pattern, even though a uniform surface with the same value
of 
 would be completely wetted by the liquid. Indeed, for
low �̄, the stable branch of the Helmholtz free energy �Fig.
11� corresponds to a low-density ring forming over the pat-
tern where the corresponding local densities �i�0.5. The
density is insufficient to form a liquid film over the pattern,
and as a consequence, the ring appears dry. As the density
increases, the system undergoes a morphological transition to
a bulge state at ���0.0107. In Fig. 12, we plot a sequence
of snapshots corresponding to the evolution of the bulge
morphology as the density increases. We observe that a liq-
uid droplet develops on one side of the ring pattern. Rather
than forming a thin film over the whole pattern, the system
prefers to accommodate a partial wetting situation where a
droplet is forming over a partial area of the pattern. As the
density increases, the bulge spreads over the nonwetting disk
inside the pattern but is always partially wetting the ring.
When ��=0.0206, the bulge branch crosses the cap branch
and a spherical cap is formed over the ring and nonwetted
region of the surface that it surrounds. The contact angle
formed by this cap with the surface is ��90°. Again, due to
pinning of the three-phase contact line at the ring edge, the
contact angle increases with the volume of the cap.

D. Influence of the temperature

Finally in order to make a closer connection with the way
experiments are conducted, we perform a set of calculations
in which we change the temperature of the system while the
total density is kept constant. We initialize the system to a
bulge morphology found in a 30-40 ring system with 

=0.3. The different morphologies obtained as a function of
the temperature are shown in Fig. 13. As we expect, the
cooling of the system leads to an increased covering of the
nonwetting disk by the bulge and finally to the formation of
a spherical cap. On the other hand, when the temperature
increases, the bulge volume decreases until a temperature
where a ring covers the pattern. Therefore, the same mor-
phologies are found if we change either the temperature or
the average density.

FIG. 11. Excess Helmholtz free energy for the 30-40-ring-
patterned surface. Results are shown for the ring �dot-dashed lines�,
bulge �solid line�, and spherical cap �dashed lines� morphologies.
T*=1.3, 
=0.2.

FIG. 12. �Color online� Bulge morphologies formed over a 30-
40-ring-patterned surface as a function of the density. The dashed
lines surrounding an image indicate metastable bulge morphologies
with respect to the spherical cap. T*=1.3, 
=0.2.

FIG. 13. �Color online� Bulge morphologies formed over a 30-
40-ring-patterned surface as a function of the temperature. ��
=0.0138, 
=0.3.
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IV. CONCLUSIONS

We have investigated the behavior of fluid wetting sub-
strates decorated with nanometric ring patterns by perform-
ing calculations at a molecular level using MF-DFT for a
lattice model. The formation of droplets on surfaces corre-
sponds to a region of bulk vapor metastability where the bulk
liquid is stable. The grand canonical ensemble is therefore
unsuited to study this problem since the variations of the
total density would preempt the morphological transitions
related to the droplet. We therefore implement an algorithm
where the total density of the system is fixed.

The calculations show that a liquid adsorbed on a ring
nanopatterned surface can exhibit three classes of morpholo-
gies as a function of the volume of liquid. At low density, the
fluid is structured into layers above the ring pattern. This
morphology thickens as the density increases until the liquid
undergoes a morphological transition to a bulge where a
droplet of liquid forms on one side of the ring. The density is
no longer homogeneous along the annulus, and the liquid
morphology does not present the axial symmetry imposed by
the ring geometry. The existence of this transition is, how-
ever, subject to a minimum length scale necessary to form
the bulge morphology and to a maximum ring width beyond
which the bulge ceases to exist. The balance between the
interfacial tensions and the bulk free energy governs these
conditions. As the density increases, the system undergoes
another morphological transition to a spherical cap that cov-
ers the disk of radius Rout. When the ring dimension in-
creases, the first stable cap covering the pattern is formed
with a lower contact angle. As the density increases, the con-
tact angle increases. The cap morphologies found in our cal-
culations are pinned to the interface by the ring boundary.
This is probably because the reference surface does not in-
teract with the fluid as we set the wall-fluid potential to zero
for any surface sites that do not belong to the pattern. There-
fore, this surface is totally nonwetting for the fluid. If we
tuned the interaction of the reference surface to decrease the
contrast between the pattern and the remainder of the sur-
face, the pinning condition should disappear and the cap
would spread outside the pattern interface.

An interesting behavior occurs when we decrease the sur-
face field. The weakening of the field leads to a situation of
partial wetting where, at low density, no liquid is homoge-
neously adsorbed over the pattern and therefore the ring pat-
tern is essentially dry even though a uniform surface with the
same value of 
 would be completely wetted by the liquid.
The first liquid state found is a bulge that wets a part of the
ring while the remainder of the pattern is dry. In future work
it would be interesting to investigate the nature of the tran-

sition between the wetting and partial wetting states and its
dependence upon the ring geometry.

In experiments, the different liquid morphologies are ob-
tained by changing the temperature of the system that con-
sequently leads to a change of the liquid volume �14�. If we
perform calculations by cooling down or heating up the sys-
tem, we also found the same behavior as the one found by
modifying the density at constant temperature. The behavior
found in this work is in very good agreement with experi-
ments and calculations performed at a micrometer scale
�14,28�. Beyond that, this work demonstrates the suitability
of the lattice model to study wetting of nanopatterned sur-
faces. The behavior seen in our MF-DFT calculations is also
observed in Monte Carlo simulations. As an illustration, we
plot in Fig. 14 a preliminary result from a Monte Carlo simu-
lation in the N-V-T ensemble obtained at the same ratio T /Tc
for the 30-40 ring and 
=0.3. The same bulge morphology
seen in the MF-DFT calculations is obtained. It is perhaps
worthwhile to point out that the number of particles in this
simulation is N�0.5�106. A comparable calculation with
an off-lattice model would be very expensive indeed.
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